Networks Analysis

Time: 3 hrs.

Max. Marks: 80

Note: 1. Answer FIVE full questions, choosing ONE full question from each module. 2. Missing data, if any, may be suitably assumed.

Module-1

Third Semester B.E. Degree Examination, Jan./Feb. 2023

Briefly explain the classification of electrical networks. 1

(08 Marks)

(08 Marks)

For the circuit shown in Fig.Q1(b), find the current through 30Ω resistance using mesh analysis.

OR

Determine the current through 100 resistance in the network shown in Fig.Q2(a), by star-2 delta conversion.

Fig.Q2(a)

For the networks shown in Fig.Q2(b) determine the node voltages V₁. V₂, V₃ and V₄ using nodal analysis.

1 of 4

(08 Marks)

Important Note: 1. On completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages.

2. Any revealing of identification, appeal to evaluator and /or equations written eg, 42+8 = 50, will be treated as malpractice.

Module-2

3 a. State superposition theorem. Determine the current through 2Ω resistor of the network shown in Fig.Q3(a) using super position principle.

Fig.Q3(a)

(08 Marks)

b. Use Millman's theorem to find the current through the 10Ω resistance in the circuit of Fig.Q3(b).

(08 Marks)

OR

4 a. Verify the reciprocity theorem for the voltage V and current I, in the network shown in Fig.Q4(a).

Fig.Q4(a)

(08 Marks)

b. Obtain the Thevenin's equivalent circuits across terminals A and B for the circuit shown in Fig.Q4(b).

(08 Marks)

Module-3

5 a. In the circuit shown in Fig.Q5(a), the switch K is changed from position 1 to position 2 at t = 0. The steady state has been reached before switching. Find the values of,

i,
$$\frac{di}{dt}$$
 and $\frac{di^2}{dt^2}$ at $t = 0$.

Fig.Q5(a)

(08 Marks)

b. In the R - C series circuit shown in the Fig.Q5(b), the switch is closed at t = 0. Obtain the expression for the current.

(08 Marks)

OR

a. In the circuit shown in Fig.Q6(a) V = 10V, $R = 10\Omega$, L = 1H, $C = 10\mu F$ and $V_C = 0$. Find i, $\frac{di}{dt}$ and $\frac{d^2i}{dt^2}$ if switch K is closed at t = 0.

Fig Q6(a)

(08 Marks)

b. For series RLC circuit, the capacitor is initially charged to 1V, find the current i(t) when the switch K is closed at t = 0. Use Laplace transform Fig.Q6(b).

Module-4

- 7 a. Derive the expressions of half power frequencies w₁ and w₂ and also bandwidth of a series resource circuit. (08 Marks)
 - b. A series RLC circuit consists of resistance of 1 K Ω and an inductance of 100mH in series with capacitance of 10pF. If 100V is applied as input across the combination determine:
 - i) The resonant frequency
 - ii) Maximum current in the circuit
 - iii) Q-factor of the circuit
 - iv) The half-power frequencies.

(08 Marks)

OR

- 8 a. Derive the expression of resonance frequency of a parallel resonance circuit. (08 Marks)
 - b. For the parallel resonant circuit shown in Fig.Q8(b), find I₀, I_L, I_c f₀ and dynamic resistance.

Fig.Q8(b)

(08 Marks)

Module-5

9 a. Derive the expression for z - parameters in terms of y-parameters.

(08 Marks)

b. Find the z-parameters for the network shown in Fig. Q9(b).

(08 Marks)

OR

10 a. Drive the expression of Y-parameters in terms of transmission (ABCD) parameters.

(08 Marks)

b. Find the y-parameters of the two port network shown in Fig,Q10(b).

(08 Marks)

* * **